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ABSTRACT: Heat is the leading cause of weather-related death in the United States. Wet bulb globe temperature
(WBGT) is a heat stress index commonly used among active populations for activity modification, such as outdoor workers
and athletes. Despite widespread use globally, WBGT forecasts have been uncommon in the United States until recent
years. This research assesses the accuracy of WBGT forecasts developed by NOAA’s Southeast Regional Climate Center
(SERCC) and the Carolinas Integrated Sciences and Assessments (CISA). It also details efforts to refine the forecast by
accounting for the impact of surface roughness on wind using satellite imagery. Comparisons are made between the
SERCC/CISA WBGT forecast and a WBGT forecast modeled after NWS methods. Additionally, both of these forecasts
are compared with in situ WBGT measurements (during the summers of 2019–21) and estimates from weather stations to
assess forecast accuracy. The SERCC/CISA WBGT forecast was within 0.68C of observations on average and showed less
bias than the forecast based on NWS methods across North Carolina. Importantly, the SERCC/CISAWBGT forecast was
more accurate for the most dangerous conditions (WBGT . 318C), although this resulted in higher false alarms for these
extreme conditions compared to the NWS method. In particular, this work improved the forecast for sites more sheltered
from wind by better accounting for the influences of land cover on 2-m wind speed. Accurate forecasts are more challeng-
ing for sites with complex microclimates. Thus, appropriate caution is necessary when interpreting forecasts and onsite,
real-time WBGT measurements remain critical.

SIGNIFICANCE STATEMENT: This research assesses the accuracy of wet bulb globe temperature (WBGT) fore-
casts. WBGT is a heat stress index that accounts for impacts of air temperature, humidity, wind, and radiation. It is
widely used in occupational, athletic, and military settings for heat stress assessment, yet WBGT forecasting in the
United States is a relatively new development. These forecasts can be used by decision-makers to better plan activities.
We found that WBGT forecasts by NOAA’s Southeast Regional Climate Center and Carolinas Integrated Sciences
and Assessments were within 0.68C of observations overall in North Carolina and less biased than forecasts based on
methods used by the U.S. National Weather Service, which had larger, colder biases that present potential safety issues
in planning.

KEYWORDS: Surface observations; Bias; Automatic weather stations; Forecast verification/skill; Forecasting;
Hindcasts

1. Introduction

Exposure to extreme heat leads to more deaths than any
other weather event in the United States (CDC 2010; NWS
2020a). To prevent adverse health outcomes resulting from
heat exposure, systems have been developed that provide
warnings to the public during particularly dangerous periods
of hot weather. These systems, often referred to as heat-
health warning systems (HHWS), are based on weather fore-
casts of variables, such as air temperature or the heat index
(Kovats and Kristie 2006). While the heat index is commonly
used in the United States for warning of dangerous condi-
tions, other tools such as the NWS Heat Risk tool are used
and are currently being further spread. The heat index (Rothfusz
1990) accounts for the effect of humidity and air temperature,

notably only in the shade. However, other heat stress indices,
such as wet bulb globe temperature (WBGT), provide more
comprehensive assessments of environmental heat stress (Budd
2008; Hondula et al. 2014).

Prior to 2018/19, WBGT was not a routinely forecast vari-
able in the United States. In 2018, NOAA’s Southeast Re-
gional Climate Center (SERCC) and Carolinas Integrated
Sciences and Assessments (CISA) developed a WBGT fore-
cast tool, which was operationalized in the summer of 2019
(SERCC and CISA 2023). The United States National
Weather Service (NWS) released an experimental WBGT
forecast in 2019 that was made operational 1 June 2022 (NWS
2019a, 2022). The research presented here assesses the accu-
racy of the SERCC WBGT forecast and the forecasts made
with the methods used by the NWS through comparisons
against observed WBGT in North Carolina and estimated
WBGT at weather stations in select parts of the CONUS, pro-
viding insight on future improvements.Corresponding author: Jordan Clark, jordan@alumni.unc.edu
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a. Wet bulb globe temperature

The U.S. military developed WBGT in the 1950s to reduce
the incidence of heat-related casualties at training camps dur-
ing times of extreme heat (Budd 2008; Yaglou and Minard
1957). WBGT is calculated by adding together three compo-
nents: dry-bulb temperature, natural wet bulb temperature,
and black globe temperature (Budd 2008). The black globe
temperature is measured using a black globe thermometer.
The temperature probe is suspended inside the black globe,
and the globe itself is unshielded from radiation. The black
globe temperature is an indicator of the temperature due to
radiative forcing incident on human skin, including both di-
rect and diffuse shortwave radiation and longwave radiation
from the surface of Earth (Kopec 1977; Liljegren et al. 2008).
The temperature of the black globe is also influenced by wind
speed. The second term, the dry-bulb temperature, is a stan-
dard measure of ambient air temperature, with the temperature
sensor located inside of a radiation shield that is naturally venti-
lated. Unlike the commonly measured and estimated psychromet-
ric wet bulb temperature, which is similarly located in a radiation
shield like the dry bulb thermometer, the natural wet bulb ther-
mometer is measured unshielded from radiation (Liljegren et al.
2008). There is a wet wick that is wrapped around the bulb of
the thermometer and the evaporation of water from this wick
mimics the cooling effect of sweat evaporating off of human
skin. From these three measures, WBGT is calculated ac-
cording to the following equation:

WBGT 5 0:7NWB 1 0:2Tg 1 0:1Ta, (1)

where NWB is the natural web bulb temperature, Tg is the
black globe temperature, and Ta is the dry bulb temperature
(ambient air temperature).

WBGT continues to become more popular for assessing
heat stress, including applications in athletics (Casa et al.
2015; Roberts et al. 2021), occupational settings (ACGIH
2017; ISO 1989, 2017; NIOSH 2016; OSHA 2017), and the
military (US Department of the Army 2022). Numerous U.S.
states now require measurements of WBGT to determine if it
is safe for athletic practice outdoors (Grundstein et al. 2015;
NCHSAA 2016), such as in North Carolina, South Carolina,
and Georgia. Ultimately, WBGT is utilized based on a given
value’s corresponding level of danger, often referred to as flag
level. The WBGTs used to define each threshold and associ-
ated activity modifications vary depending on setting and ap-
plication (such as in occupational environments or athletics).
An example of common values used for thresholds is 26.78–
29.48C (green flag), 29.58–31.08C (yellow flag), 31.18–32.18C
(red flag), and 32.28C1 (black flag). These particular thresh-
old values, which are the thresholds utilized throughout this
paper, are utilized in high school athletics in North Carolina
(NCHSAA 2016) and are identical to the thresholds used by
the U.S. Army (US Department of the Army 2022), except
for the green flag, which for the latter begins at 27.88C instead
of 26.78C. Flag levels denote increasing levels of danger, with
green flag requiring limited modifications to activity and black

flag, for example, requiring cancellation of high school foot-
ball practices in various states.

b. Forecasts of WBGT

Accessible forecasts of WBGT enable advance knowledge
of potentially hazardous periods, which has applications in nu-
merous sectors and settings. For example, in athletics and
occupational environments, certain workouts or occupational
activities may be necessary but also lead to increased heat
strain. With the associated activity modification guidelines
(such as work/rest ratios) and recommendations on adjust-
ments to clothing or equipment based on WBGTs, forecasts
of the index allow for planning of activities to occur on certain
days or at certain times of day.

Additionally, with forecasts of WBGT available, this lays
the groundwork for future use of WBGT by other sensitive
groups, since it is recognized to be more comprehensive than
the heat index (Budd 2008; Hondula et al. 2014). However,
there has been limited research on the accuracy of WBGT
forecasts. Although WBGT forecasts have been in use in
some parts of the world for many years, such as in Japan
(Hoshi and Inaba 2007), these forecasts have not been com-
mon in the United States.

In 2018, NOAA’s Southeast Regional Climate Center
(SERCC) and Carolinas Integrated Sciences and Assessments
(CISA) created a WBGT forecast tool, which was made oper-
ational in the summer of 2019 (SERCC and CISA 2023). As
of 2022, this forecast tool was operational for the eastern two-
thirds of the contiguous United States. Similarly, in 2019, the
NWS began including WBGT forecasts in an experimental
version of their gridded forecast data, the National Digital
Forecast Database (NDFD) (NWS 2019a). This forecast re-
cently became operational in 2022 (NWS 2022). However, the
SERCC/CISA and NWS WBGT forecasts utilize different
methods. One aspect of the research here is to assess the accu-
racy of these different forecast methodologies.

Complicating the forecasting of WBGT, the degree to
which any weather model accurately captures the heterogene-
ity of land types and microclimates within a given pixel of its
model output is limited, as there can be wide variation in
WBGT and the microclimatic variables influencing WBGT
across hundreds of meters (Verkaik et al. 2005). This variabil-
ity is not well captured by weather models due to their coarser
resolution, since the highest-resolution output of widely avail-
able and spatially expansive models is 2.5 km. In addition to
assessing the accuracy of these WBGT forecasts, this research
also assesses the utility of supplementing subforecast grid
scale surface roughness information to better tune the down-
scaling of wind speeds for calculating the WBGT forecast.
The current SERCC/CISA forecast tool employs Pasquil–
Gifford (PG) stability classes for the downscaling of wind
from 10 to 2 m (Bowen et al. 1983; Frank et al. 2020; U.S. EPA
2000).

The importance of accurately incorporating the wind at 2 m
for WBGT is paramount, given that high (hot) values of
WBGT are sensitive to slight changes in environmental condi-
tions, particularly changes in wind speed. With the sensitivity
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of WBGT (and the human body) to small differences in wind
speed, variations in surface roughness can lead to vastly dif-
ferent WBGTs at the ground between nearby locations. For
example, under full sun and with a dewpoint of 21.18C and an
air temperature of 308C, a slight change in wind speed from
1.3 to 0.6 m s21 can result in a change in WBGT of two flag
categories (from yellow to black flag).

The SERCC/CISA forecast tool utilizes both the NWS
National Digital Forecast Database (NDFD) and the NWS
National Blend of Models (NBM) as inputs to a routine that
computes the WBGT forecast (SERCC and CISA 2023).
Both products forecast at hourly time steps out to 36 h in the
future, but the NDFD hourly forecast changes to a 6-hourly
forecast at 72 h past initialization while the NBM forecasts
3-hourly values out to 192 h. Thus, the NDFD is used for 1–69 h
and the NBM for 72–120 h for the SERCC/CISA forecast tool.
References to the SERCC/CISA WBGT forecast will be here-
after referred to as S-WBGT. The S-WBGT methodology sup-
plemented with surface roughness for downscaling wind speeds
will hereafter be referred to as S-WBGT Z.

The forecast analysis here serves as an update to an assess-
ment of forecast accuracy presented in Clark and Konrad
(2020). For assessing accuracy, the WBGT forecasts will be
compared with 1) Observed WBGT measurements collected
with a WBGT meter that is compliant with standards estab-
lished by the International Organization for Standardization
and 2) WBGT estimated from weather stations. Satellite im-
agery (Sentinel 2A/2B and Landsat 8 ETM1) was used to cal-
culate the normalized difference vegetation index (NDVI)
and green vegetation fraction (GVF) to then estimate surface
roughness across portions of the forecast domain for the S-WBGT
Z forecast. Two sources of satellite imagery were used to assess if
the higher-resolution imagery resulted in more accurate sur-
face roughness values and thus a more accurate WBGT fore-
cast. In addition to looking at forecast bias overall between
methods, accuracy of WBGT forecasts using the NBM and
NDFD are compared and variations in accuracy across space,
weather condition, and time are assessed.

2. Data

a. Weather forecast data

Hourly gridded forecast data for two NWS forecast prod-
ucts (four runs per day: 0000, 0600, 1200, and 1800 UTC)
were archived for the summers of 2019–21: National Digital
Forecast Database (NDFD) and the National Blend of Mod-
els (NBM). The NDFD is a product containing a mosaic of
digital weather forecasts from the NWS and National Centers
for Environmental Prediction (NCEP) (NWS 2019b). The
NBM is an ensemble of guidance, a statistically derived blend
from numerous numerical weather prediction models (Craven
et al. 2020). Two versions of the NBM were utilized here,
version 3.2 (Craven et al. 2020) for the summer of 2019 and
version 4.0 (which constitutes 85% of the NBM forecast data)
for the summers of 2020 and 2021 (NWS 2020b). While the
majority of the analysis focuses on the 24-h forecast, this in-
corporates a window surrounding this forecast lead time,

ranging from 21 to 27 h to ensure forecasts are for relevant times
of day and for larger sample sizes of forecast data points.

b. WBGT data

A weather station was collocated with a WBGT meter to
provide data quality checks. The weather station was a Davis
Instruments Vantage Pro 2 Plus (Fig. 1) that recorded all varia-
bles needed to estimate WBGT at 10-s intervals, detailed below.
WBGT data were recorded with a WBGT meter designed to
meet the specifications for a WBGT meter as outlined by the
International Organization for Standardization, first used in
Cooper et al. (2017) (Fig. 1). The ISO guidelines (Parsons 2006)
require that the black globe have a diameter of 0.15 m and the
temperature sensor should measure 208–1208C with accuracies
of60.58C for 208–508C and618C for temperatures greater than
508C. The natural wet bulb temperature sensor should be a
cylindrical shape, have a diameter of 6 6 1 mm and length of
306 5 mm, and measure the range 58–408C with an accuracy of
60.58C. The wick situated over the temperature sensor must be
white and made of cotton or other water-absorbent material.
Last, the dry bulb temperature sensor should be positioned
within a radiation shield and measure the range 108–608C with a
618C accuracy (Parsons 2006).

The instruments were situated such that they were 1.5 m
above the ground, on average, with the weather station ane-
mometer situated highest at 2 m. Data were recorded at vari-
ous intervals (2-, 5-, 10-, 30-, 60-, or 120-s intervals), depending
on the location of the meter and thus the frequency at which it

FIG. 1. Field work instruments (WBGT meters and weather sta-
tion). The WBGT meter (right) with a black globe thermometer,
natural wet bulb temperature probe situated in a water reservoir,
and dry bulb sensor in a radiation shield. A weather station (left)
and a Kestrel 5400 (middle) were also collocated with the WBGT
meter.
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could be accessed. Measurements were taken at several
locations throughout the summers of 2019–21: the Horace
Williams Airport in Chapel Hill, North Carolina, and within
suburban environments in Chapel Hill, Durham, and Shelby,
North Carolina.

Two methods were used to identify when instruments were
in the shadows of buildings or trees during data collection.
First, we periodically captured images of the instruments to
directly observe any shading. Second, we compared the mea-
sured solar radiation from the weather station with estimated
clear-sky solar radiation for the location and time. This was
completed to ensure the accuracy of the observed WBGT be-
ing utilized, in that shaded WBGT would skew the forecast
bias assessment since the forecasts were not made for shaded
WBGT. All data were collected over grassy surfaces with no
obstacles between the sky and sensors (i.e., no trees). The first
15 min of data for a given instance of data collection were dis-
carded. This allowed adequate time for the instrumentation
to equilibrate to the environment after being stored indoors
or in the shade (Kestrel 2021). WBGT varies rapidly over small
time periods due to slight changes in insolation (e.g., from
clouds) and wind speed, which fluctuate rapidly. Thus, to ro-
bustly compare with the (instantaneous) hourly time step fore-
cast data, the Observed WBGT was averaged over the course
of 20 min (10 min before and after the top of every hour).

Station WBGT was estimated using weather stations from
three networks. These three networks include the Automated
Surface Observing System (ASOS) network, AutomatedWeather
Observing System (AWOS) network, and the North Carolina
Environment and Climate Observing Network (ECONet), which
is maintained by the North Carolina State Climate Office. In total,
169 stations were used (130 stations from ASOS/AWOS and
39 stations from the ECONet) (Fig. 2). The 130 ASOS/AWOS
stations were mainly in North Carolina. Stations in other states
were selected based on the availability of Sentinel satellite imagery
(detailed below). Iowa Environmental Mesonet (IEM) archive
(Iowa Environmental Mesonet 2021) was used to download the
weather station data for stations on the ASOS and AWOS net-
works. The Climate Retrieval Observations Network of the South-
east Database housed at the North Carolina State Climate Office
(NCCRONOS 2021) was used to download the ECONet weather
station data. ECONet weather stations directly measured solar ra-
diation, which is required to estimate WBGT. However, for
ASOS/AWOS weather stations, total cloud cover is reported in
lieu of solar radiation. The reported cloud cover was used to esti-
mate the observed solar radiation for the stations on this network,
detailed below. Hourly data for all stations for the heat season (1
May–30 September) 2019–21were used.

c. Satellite imagery and land cover

Satellite imagery from Sentinel-2A and Sentinel-2B were
downloaded from the Copernicus Open Access Hub, specifi-
cally the Level-1C product (Copernicus Sentinel data 2019).
Imagery included scenes covering the entire state of North
Carolina and parts of South Carolina, Georgia, Alabama,
Tennessee, Virginia, Pennsylvania, Illinois, Oklahoma, and
Texas. All imagery utilized was captured on three dates:

29 August, 30 August, and 7 September 2019. In addition to
the Sentinel imagery, Landsat 8 ETM1 Level-2 imagery was
also obtained for the state of NC, with a collection date of
17 August 2019. The 2019 National Land Cover Database
(NLCD) was retrieved for the CONUS to provide the land
cover information utilized here (Dewitz 2021).

3. Methods

Station WBGT across the ASOS/AWOS network was esti-
mated using the Liljegren et al. (2008) methodology, which
has been found to be most accurate at estimating WBGT
(Lemke and Kjellstrom 2012; Patel et al. 2013). S-WBGT fore-
casts likewise applied the Liljegren et al. methodology for the
NDFD/NBM. The necessary formulas for using the Liljegren
et al. (2008) method were provided by the R package “wbgt”
(Lieblich and Spector 2017).

To estimate solar radiation for ASOS/AWOS weather sta-
tions, the reported cloud cover categories were converted to a
percentage cloud cover. These stations report cloud cover at
several levels, using the following categories: clear (0%–5%],
few (5%–25%], scattered (25%–50%], broken (50%–87%],
and overcast (87%–100%] (brackets denote inclusivity)
(NOAA et al. 1998). Comparing the observed solar radiation
at ECONet weather stations with estimated solar radiation re-
vealed that using the maximum value within each of these
ranges produced the most accurate results, that is, clear (5%),
few (10%), scattered (50%), broken (87%), and overcast
(100%). Since ASOS/AWOS stations measure clouds at mul-
tiple levels, the layer with the largest amount of cloud cover
was used to derive the percentage cloud cover variable.

With 1) the percentage cloud cover at ASOS/AWOS sta-
tions and 2) the cloud cover provided in the forecast data, the
clear-sky direct radiation value (based on the time and loca-
tion of a station observation or forecast data point) was modi-
fied by the percentage cloud cover to estimate solar radiation
with the following equation:

Srad 5 R0(1 2 0:75n3:4), (2)

where n is the cloud cover fraction (0.0–1.0) and R0 is the
clear-sky direct radiation (W m22) estimated using (3):

R0 5 990 sin(Æ 2 30), (3)

whereÆ is solar elevation angle (Kasten and Czeplak 1980).

FIG. 2. Map of the weather stations used (by network) for station
WBGT.
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The forecast data and observed weather station data re-
ported wind speed at 10 m. Except for the S-WBGT Z (de-
tailed below), these measurements were logarithmically
downscaled from 10 to 2 m using the following function:

UZ 5 Ur
Z
Zr

( )p
, (4)

where Uz is the mean wind speed at height Z above ground,
Ur is the wind speed at the reference height Zr, and p is the
power-law exponent (Bowen et al. 1983; Frank et al. 2020;
U.S. EPA 2000). The “urban” exponents were used here and
are provided in Table 1, since this is implemented in the
SERCC/CISA WBGT tool after preliminary field work re-
vealed that the “rural” exponents resulted in 2-m wind speeds
that were too fast.

The solar radiation delta T (SRDT) method was used to de-
termine Pasquil–Gifford stability classes and the correspond-
ing power-law exponent (Frank et al. 2020; U.S. EPA 2000).
The SRDT method serves as an indicator of atmospheric
stability by using observed solar radiation during the day
and vertical temperature difference at night (Frank et al.
2020; U.S. EPA 2000). For observations (or forecast data
points) with wind speeds of less than 1 m s21, the wind speed
values were increased to 1 m s21. This decision was based on
the sensitivity of the anemometers installed at the weather
stations that were used (NOAA et al. 1998).

a. Surface roughness and wind speed

A variety of methods have been developed for characteriz-
ing surface roughness across different land cover and land use
types. Several characteristics of the land surface have been
used to assess surface roughness length, including NDVI
(Bastiaanssen et al. 1998; Markert et al. 2019), GVF (Markert
et al. 2019; Zeng et al. 2012), and leaf area index (LAI) (Su
2002; Zheng et al. 2014). The methodology utilized here drew
upon the method developed for the Noah Land Surface
Model (LSM) version 3.4.1 (Chen and Zhang 2009) since this
parameterization (7) was found to be most consistent across
different land cover types and climate patterns (Markert et al.
2019; Zheng et al. 2014).

The first step was to atmospherically correct the Sentinel
satellite imagery using the Sentinel Application Platform (SNAP)
software and the plugin Sen2Cor. The Landsat imagery was al-
ready atmospherically corrected. For both the Sentinel and Land-
sat imagery, the NDVI was calculated with (5):

NDVI 5
NIR 2 RED
NIR 1 RED

, (5)

where NIR is reflectance in the near-infrared range and RED
is reflectance in the red range. Following Zheng et al. (2014)
and Markert et al. (2019), the GVF was calculated using (6):

GVF 5
NDVI 2 NDVImin

NDVImax 2 NDVImin
, (6)

where NDVI is the NDVI of a given pixel, NDVImax is the
maximum NDVI for a land cover class, and NDVImin is the
NDVI of bare soil (0.01). The land cover classification data
were drawn from the 2019 National Land Cover Database
(NLCD) (Dewitz 2021). Since the NLCD has a resolution of
30 m, the Sentinel NDVI was rescaled to match this resolution
before calculating NDVImax per land cover class and the
GVF.

Finally, surface roughness was calculated with (7) (Markert
et al. 2019; Zheng et al. 2014):

Z0m 5 (1 2 GVF)Z0m,min 1 GVF 3 Z0m,max, (7)

where GVF is green vegetation fraction, Z0m,min is the mini-
mum surface roughness in meters, and Z0m,max is the maxi-
mum surface roughness in meters, with the values for the
latter two provided in Table 2 (Markert et al. 2019).

To incorporate the influences of surface roughness at vary-
ing spatial scales for a given location, a weighted average
surface roughness was calculated. The different configurations
for weighting each scale for calculating this average are provided
in Table A1 in appendix A. This average used the roughness val-
ues from the following scales: 30 m (10%), 100 m (25%), 250 m
(50%), and 500 m (15%). After deriving the weighted average
surface roughness, the wind speeds to be used for S-WBGT Z
were downscaled utilizing the following function from van Den
Berg (2004):

u(z) 5 u(zref)
ln(Z/Z0)

ln(Zref /Z0)
, (8)

TABLE 1. The solar radiation delta T (SRDT) method was used to determine Pasquil–Gifford stability classes and the corresponding
power-law exponent (drawn from U.S. EPA 2000).

Stability class Urban exponent Rural exponent Stability class Urban exponent Rural exponent

A 0.15 0.07 D 0.25 0.15
B 0.15 0.07 E 0.30 0.35
C 0.20 0.10 F 0.30 0.55

TABLE 2. Surface roughness length ranges for the eight land
cover classes. Drawn from Markert et al. (2019).

Landcover class Z0m,min Z0m,max

Evergreen forest 0.5 0.5
Coniferous forest 0.5 0.5
Mixed forest 0.2 0.5
Water 0.0001 0.0001
Bare 0.01 0.01
Cropland 0.05 0.15
Urban and built up 0.5 0.5
Impervious 0.03 0.03
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where Z0 is surface roughness length in meters (weighted av-
erage surface roughness), Zref is the height of original wind
speed (10 m), Z is the height of the downscaled wind speed
(2 m), and u is wind speed (van Den Berg 2004). This equa-
tion differs from (4) since surface roughness is being utilized
in this case. This was calculated for both the forecast data and
weather station data. After downscaling the wind speeds, the
S-WBGT Z was calculated, with the methods for converting
cloud cover to solar radiation identical to the ones described
above for S-WBGT.

b. NWS WBGT

As of 2022, WBGT is a forecast parameter in the NDFD
(NWS 2022). However, it is not a parameter in the current
version of the NBM. Additionally, since the methods used by
the NWS in their forecast WBGT product have changed over
the duration of this study, the NDFD forecast WBGT values
were not used directly for this assessment. Instead, the fore-
cast WBGT was recalculated using the relevant parameters
from the NBM/NDFD based on the latest methods used by
the NWS. For the forecast WBGT calculated with methods
used by the NWS (“NWS WBGT”), all data processing of
solar radiation values and wind speed (downscaled without
surface roughness) were identical to those described above
for S-WBGT. Since the NDFD does not have the shortwave
solar radiation parameter found in NBM v4.0, WBGT fore-
casts calculated from the NBM did not use this field, but in-
stead derived solar radiation from the forecast percentage
cloud cover. The NWS WBGT, however, utilizes different
methods for estimating the black globe temperature and the
natural wet bulb temperature (Boyer 2022). Black globe tem-
perature estimation utilizes a slightly modified version of the
methodology from Dimiceli et al. (2011). These modifications
include 1) direct beam radiation capped at 0.75 (instead of
1.0) and 2) the convective heat transfer coefficient set to 0.228
(instead of 0.315) for daytime and 0 at night (T. Boyer 2022,
personal communication).

In 2022, the NWS methodology for estimating the natural
wet bulb temperature in their operational, gridded NDFD
product was changed (Boyer 2022; T. Boyer 2022, personal
communication). However, the methodology employed by
the NWS before this change is used here, since it was found to
perform notably better in comparison with the field observa-
tions collected in this study, which was a modified version of
the method developed in Hunter and Minyard (1999):

Tn 5 Tw 1 0:00117S 2 0:233u 1 1:072, (9)

where Tn is the natural wet bulb temperature (8C), Tw is the
psychrometric wet bulb temperature (8C), S is solar irradiance
(W m22), and u is 2-m wind speed (m s21) (Boyer 2022).

c. Analysis

Observed WBGT data were collected throughout the sum-
mers of 2019–21 from May to September at the locations de-
tailed above. Forecast accuracy for observed WBGT was
defined as the forecast WBGT minus the observed WBGT.
For station WBGT (WBGT estimated at ASOS/AWOS and

ECONet stations), the accuracy was defined as the forecast
WBGT minus the station WBGT, as estimated by the Liljegren
et al. (2008) methodology. In addition to assessing the overall
hourly forecast accuracy for each method compared to both
observed WBGT and station WBGT, the forecast accuracy
was stratified by hour of day and weather condition. It is
worth noting that the sample sizes for the observed and station
WBGT differ, given that the station WBGT consists of numer-
ous weather stations while observed WBGT draws from field
work with a limited number of instruments (Tables C1 and C2
in appendix C). Comparisons were made between the NBM and
NDFD WBGT forecasts and at varying forecast lead times for
these forecast products. To determine the utility of incorporating
surface roughness into the forecast, comparisons were made be-
tween the forecast accuracy of the S-WBGT and S-WBGT Z.
Only data points between 0600 and 2000 local time (LT) were
included since this is the period during which heat stress and
WBGT are highest.

Since WBGT is used based on the corresponding flag level
for a given value, the accuracy of forecasting the flag levels asso-
ciated with the forecast WBGT, observed WBGT, and station
WBGT were also assessed. Contingency tables for WBGT flag
accuracy were created and verification statistics calculated for
each forecast method. Using the R package “verification”
(NCAR Research Applications Laboratory 2015), the following
statistics were calculated and compared for each flag level:

1) WBGT FLAG ACCURACY METRICS (BY FLAG LEVEL)

1) Percent correct (%): Total of correct forecasts and correct
rejections (no event forecast, no event observed) divided
by total number of forecasts (Jolliffe and Stephenson 2012).

2) Hit rate (%): percentage of correct forecasts (e.g., black flag
forecast, black flag observed, hit) (Jolliffe and Stephenson
2012).

3) Bias score: measure indicating the direction of bias (positive/
negative) in addition to the magnitude (ratio of frequency of
forecasting a flag level to the frequency of observations at
that flag level). Values greater than 1 correspond to positive
(warm) biases. Values less than 1 correspond to negative
(cool) biases (Jolliffe and Stephenson 2012; NCAR Research
Applications Laboratory 2015).

4) False alarm ratio: total number of false alarms (event
forecast, but not observed) for a given flag level divided
by the total number of forecasts for that flag level (Jolliffe
and Stephenson 2012).

2) WBGT FLAG ACCURACY METRICS (OVERALL

ASSESSMENT)

1) Gerrity skill score (GSS): verification measure for categori-
cal forecasts that accounts for the “closeness” of categories
in its assessment, e.g., green flag being closer to yellow flag
but farthest from black flag (Jolliffe and Stephenson 2012;
NCAR Research Applications Laboratory 2015). Values
range from 21 to 1, with 1 being a perfect forecast. In a
Gerrity skill score analysis of accuracy, greater credit is
given to correct (and almost correct) forecasts of rare
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events and less credit is awarded to correct forecasts of
common events (Jolliffe and Stephenson 2012).

2) Heidke skill score (HSS): verification measure for cate-
gorical forecasts that includes correct random forecasts.
Values range from negative infinity to 1. Scores greater
than zero mean the forecast does better than random
chance (Jolliffe and Stephenson 2012).

4. Results

a. Forecast bias comparisons

The research presented here had two objectives: 1) assess-
ing the accuracy of WBGT forecasts and 2) determining if
forecasts can be improved by using surface roughness to
downscale wind speeds. Unless otherwise stated, forecast bias
refers to the “relative bias” between forecasts and observa-
tions, with positive and negative relative bias indicating over
and under forecasting, respectively.

WBGT forecast bias compared against both observed and
station WBGT varied as a function of location, hour of day,
when stratified by weather conditions (e.g., temperature, hu-
midity, wind speed), and also based on the WBGT estimation
methodology. Overall, WBGT forecast biases in the NDFD
were more negatively biased than NBM biases (and with higher
MAEs) (Table 3), particularly when WBGT was greater than
or equal to 32.28C (Fig. 3).

For both observed and station WBGT, forecast MAE of
the three forecast methods were within 0.98 and 0.48C of one
another, respectively, when WBGT was less than 31.18C.
However, at higher values of WBGT (32.28C1), the NWS
WBGT median bias and MAE (Fig. 4) increased markedly, as
well as the RMSE (Table 4), particularly for station WBGT.
Median forecast bias for all methods relative to observed
WBGT were positive (warm) when WBGT was less than or
equal to 318C. However, NWS WBGT and S-WBGT had a
negative median bias when observed WBGT exceeded 318
and 32.18C, respectively (Fig. 4). The S-WBGT Z forecast
bias remained slightly positive at the highest WBGTs (Fig. 4).

There were two notable differences with station compared
to observed WBGT forecast accuracy (Fig. 4). First, the rela-
tive bias and MAE for both S-WBGT methods were lower
when station WBGT was less than 31.18C, and S-WBGT Z
had a slightly negative bias when station WBGT was equal to
or greater than 32.28C (20.18C). Second, NWS WBGT bias
was more negative when station WBGT was greater than or
equal to 31.18C compared to observed WBGT, and the me-
dian bias for both observed and station WBGT was negative
(too cold) across all WBGTs, with median biases of20.48 and
21.68C when station WBGT was 26.78–29.48C and 32.28C or
above, respectively (Fig. 4).

TABLE 3. Observed WBGT forecast mean absolute error.
S-WBGT (Z) are the forecasts using the Liljegren method, with
PG stability classes (surface roughness) to downscale wind
speeds. NWS WBGT refers to the WBGT forecast utilizing the
NWS methods, applied to forecast data from the NBM and
NDFD, respectively, in this table.

Metric Method $29.58C $32.28C

NBM S-WBGT 0.87 0.73
S-WBGT Z 1.08 0.65
NWS WBGT 1.02 1.20

NDFD S-WBGT 1.19 1.34
S-WBGT Z 1.02 0.85
NWS WBGT 1.48 1.97

FIG. 3. Observed WBGT forecast bias (24-h forecast): NBM and NDFD. Boxplot whiskers extend up to 1.5 times
the interquartile range (e.g., top whisker is 1.5 3 IQR 1 third quartile value). S-WBGT (Z) are the forecasts using the
Liljegren method, with PG stability classes (surface roughness) to downscale wind speeds. NWS WBGT refers to the
WBGT forecast utilizing the NWSmethods.
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b. Variations in bias

Assessing the forecast relative bias spatially (average daily
maximum station WBGT) demonstrates the high variability
across the region and between forecast methods (Fig. 3).
Figures displaying WBGT forecast bias for a broader spatial
domain are included in Fig. B1 in appendix B.

A majority of stations displayed a negative bias (from
20.88 to 20.18C) for S-WBGT, with the most negative bias
occurring at three stations located along the Appalachian
Mountains (Fig. 5). However, S-WBGT Z bias was greater
than S-WBGT (08–18C), and positive at all but ten stations,

five of which were along the Appalachian Mountains (Fig. 5).
The differences in bias between the two S-WBGT methods
ranged from 0.28 to 1.08C (WBGT . 28.98C), with the largest
bias difference occurring at stations with lower roughness
(detailed below). Last, NWS WBGT forecast bias was nota-
bly more negative, with the coolest bias along the Appala-
chian Mountains, southern and western piedmont of North
Carolina, and in coastal areas of North Carolina (Fig. 5).

Forecast bias varied across the daylight hours for observed
and station WBGT. When observed WBGT was equal to or
greater than 29.58C, both S-WBGT forecasts were positive at

FIG. 4. WBGT relative forecast (top) bias and (bottom) MAE (24-h forecast). Boxplot whiskers extend up to
1.5 times the interquartile range (e.g., top whisker is 1.5 3 IQR 1 third quartile value). S-WBGT Z is SERCC/CISA
forecast with wind speed downscaled to 2 m using PG stability classes (surface roughness). S-WBGT (Z) are the fore-
casts using the Liljegren method, with PG stability classes (surface roughness) to downscale wind speeds. NWS
WBGT refers to the WBGT forecast utilizing the NWS methods.

TABLE 4. Mean and standard deviations (SD) of the observed/station WBGT and the three forecast WBGT values (when
WBGT $26.78C). RMSE and variance ratio of observed/station WBGT when WBGT $26.78C and $29.48C. Variance ratio is
forecast:observed/station. S-WBGT (Z) are the forecasts using the Liljegren method, with PG stability classes (surface roughness) to
downscale wind speeds. NWS WBGT refers to the WBGT forecast utilizing the NWS methods.

Mean (8C) SD (8C)
Forecast

RMSE (8C)
Forecast variance

ratio (8C)

$26.78C $26.78C $29.48C $26.78C $29.48C

Observed WBGT Observed WBGT 30.3 1.8
S-WBGT 30.9 1.5 1.7 1.3 0.67 1.03
S-WBGT Z 31.5 1.5 1.9 1.3 0.66 1.05
NWS WBGT 31.2 1.5 1.7 1.5 0.66 1.01

Station WBGT Station WBGT 29.1 1.6
S-WBGT 29.2 1.7 1.2 1.1 1.17 1.55
S-WBGT Z 29.7 1.8 1.4 1.1 1.22 1.55
NWS WBGT 28.6 1.6 1.3 1.4 1.08 1.42
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all hours (except for 1100 and 1800 LT), and the NWS
WBGT was negatively biased throughout the day, except for
1600 LT (Fig. 6). Compared to 29.58C, all biases were larger
for every hour of day when WBGT was greater than 32.28C
(not pictured). Like observed WBGT, station WBGT forecast
bias followed a diurnal pattern, with the biases for all methods
becoming more positive (warm) around and immediately
after solar noon (Fig. 6). The highest median bias for
S-WBGT and S-WBGT Z occurred at 1300 and 1400 LT.

Similar to observed WBGT, early afternoon was when the
NWS WBGT median bias was closest to zero, but the bias
remained negative (cool) throughout all hours of the day
(Fig. 6).

Furthermore, S-WBGT forecast bias was markedly greater
when observed WBGT was less than 31.18C, particularly
when dewpoint temperatures were high, wind speed was rela-
tively high and variable (wide range of values) (0.6–2.2 m s21),
and solar radiation was both low and variable (Fig. 7). When

FIG. 5. Station WBGT daily maximum bias (24-h lead time): Regional variations across the Carolinas. S-WBGT (Z)
are the forecasts using the Liljegren method, with PG stability classes (surface roughness) to downscale wind speeds.
NWSWBGT refers to the WBGT forecast utilizing the NWSmethods.

FIG. 6. WBGT forecast bias (24-h lead time) by hour of day (NBM) (WBGT $ 29.58C). Boxplot whiskers extend
up to 1.5 times the interquartile range (e.g., top whisker is 1.5 3 IQR 1 third quartile value). S-WBGT (Z) are the
forecasts using the Liljegren method, with PG stability classes (surface roughness) to downscale wind speeds. NWS
WBGT refers to the WBGT forecast utilizing the NWS methods.
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observed WBGT was greater than or equal to 308C, there
was less variation in forecast bias across the different strata.
Similar patterns were seen when stratifying station WBGT
forecast bias (not pictured), but with less variation in bias
magnitudes.

c. Forecast WBGT flag accuracy

The forecast WBGT flag accuracy results (corresponding to
the flag thresholds discussed above) detailed here refer to the
NBM 24-h forecast. Confusion matrices for all results are pro-
vided in Tables C1 and C2. The most notable difference between
methods when assessing percentage of correct forecasts for each
flag was with observed WBGT (Table 5). Both S-WBGT meth-
ods had the highest percent correct for yellow flag. For black flag

observed, S-WBGT Z had a roughly 10% lower percent correct
than the SC and NWS WBGT (Tables 5 and 6). The bias scores
were similar and indicated under forecasting (bias score , 1)
for green and yellow flags (observed) for both S-WBGT
methods (Table 5). For red and black observed flags, both
S-WBGT methods over forecast (bias score . 1) and the
S-WBGT Z bias notably increased from red (1.07) to black
flag (2.11) (Table 5). Station WBGT flag accuracy was similar;
however, S-WBGT Z bias was 1.69 versus 1.07 for red flag (4)
and the NWS WBGT hit rate for black flag dropped from
42% to 18% (Table 6).

For observed and station WBGT flags, the false alarm ratio,
which is the total number of false alarms for a given flag level
divided by the total number of forecasts for that flag level

FIG. 7. S-WBGT bias (24-h lead time) stratified by meteorological variables (observed WBGT). Boxplot whiskers
extend up to 1.5 times the interquartile range (e.g., top whisker is 1.5 3 IQR 1 third quartile value). S-WBGT (Z)
are the forecasts using the Liljegren method, with PG stability classes (surface roughness) to downscale wind speeds.

TABLE 5. Forecast WBGT flag accuracy compared to observed WBGT (NBM 24-h forecast). S-WBGT (Z) are the forecasts using
the Liljegren method, with PG stability classes (surface roughness) to downscale wind speeds. NWS WBGT is the WBGT forecast
utilizing the NWS methods.

Metric Method
Green flag

(26.78–29.48C)
Yellow flag

(29.58–31.08C)
Red flag

(31.18–32.18C)
Black flag
(32.28C1)

Percent correct S-WBGT 81 70 66 76
S-WBGT Z 81 72 65 66
NWS WBGT 78 58 62 77

Hit rate (%) S-WBGT 26 30 42 84
S-WBGT Z 25 21 23 94
NWS WBGT 28 39 39 42

Bias score S-WBGT 0.33 0.69 1.42 1.53
S-WBGT Z 0.29 0.45 1.07 2.11
NWS WBGT 0.57 1.28 1.49 0.67

False alarm ratio S-WBGT 0.21 0.57 0.70 0.45
S-WBGT Z 0.14 0.54 0.78 0.55
NWS WBGT 0.51 0.69 0.74 0.37
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(Jolliffe and Stephenson 2012), was highest for red flags by
similar magnitudes across all forecast methods (Tables 5 and 6).
The hit rate was notably higher for the S-WBGTmethods relative
to the NWS WBGT for 1) observed black flag (Table 5) and
2) red and black flags for station WBGT (Table 6). In both cases,
the S-WBGT Z had the highest hit rates for black flag (94% and
75% for observed and station black flags, respectively).

Last, there were notable differences in bias between the
24- and 48-h NBM forecast for black flag, with a lower bias for all
methods for the 48-h forecast (both observed and station
WBGT) (Table 7). However, the hit rate was higher for the 24-h
forecast, 92% versus 84% for S-WBGT, 94% versus 77% for
S-WBGTZ, and 42% versus 8% for NWSWBGT (Table 7).

In addition to assessing the forecast accuracy for each flag
level, two metrics were chosen to summarize the accuracy of
each forecast method overall. For observed WBGT, the Gerrity
skill score (GSS) and Heidke skill score (HSS) were relatively
similar across methods (Table 8), with the S-WBGT having the

highest scores, followed by S-WBGT Z and the NWS WBGT.
At increasing forecast lead times, the GSS for S-WBGT Z re-
mained relatively consistent (Table 9). Contrasting observed
WBGT, at increasing forecast lead times, the station WBGT
GSS for both S-WBGT methods decreased, with a GSS of 0.31
for S-WBGT, 0.41 for S-WBGT Z, and 0.18 for NWS WBGT
for a 72-h forecast (Table 9).

d. Surface roughness

In addition to assessing the accuracy of WBGT forecasts,
this research aimed to improve the S-WBGT forecast by in-
corporating surface roughness into the downscaling of wind
speeds from 10 to 2 m. Using surface roughness to downscale
wind speeds had a distinguishable impact on the forecast and
resulting bias. Overall, using surface roughness in downscaling
resulted in slower 2-m wind speeds compared to the winds
downscaled using the SRDT method and Pasquil–Gifford sta-
bility classes (used in S-WBGT). Given the high sensitivity of
WBGT to wind speed (e.g., the rapid increase in WBGT un-
der low wind speeds), the improved (minimized) station
WBGT bias for S-WBGT Z when WBGT was equal to or
greater than 32.28C can be directly related to an improved
2-m wind speed forecast with surface roughness being used
(Fig. 4). Furthermore, the S-WBGT Z forecast bias had lower

TABLE 6. Forecast WBGT flag accuracy compared to station WBGT (NBM 24-h forecast). S-WBGT (Z) are the forecasts using
the Liljegren method, with PG stability classes (surface roughness) to downscale wind speeds. NWS WBGT is the WBGT forecast
utilizing the NWS methods.

Metric Method
Green flag

(26.78–29.48C)
Yellow flag

(29.58–31.08C)
Red flag

(31.18–32.18C)
Black flag
(32.28C1)

Percent correct S-WBGT 78 70 84 93
S-WBGT Z 74 66 81 90
NWS WBGT 77 68 86 94

Hit rate (%) S-WBGT 72 55 43 52
S-WBGT Z 59 49 42 75
NWS WBGT 86 46 24 18

Bias score S-WBGT 0.83 1.16 1.32 1.21
S-WBGT Z 0.61 1.20 1.69 2.24
NWS WBGT 1.16 0.97 0.71 0.31

False alarm ratio S-WBGT 0.14 0.52 0.67 0.57
S-WBGT Z 0.08 0.59 0.75 0.67
NWS WBGT 0.26 0.53 0.66 0.42

TABLE 7. WBGT black flag accuracy (NBM 24- and 48-h
forecast). S-WBGT (Z) are the forecasts using the Liljegren
method, with PG stability classes (surface roughness) to downscale
wind speeds. NWS WBGT is the WBGT forecast utilizing the U.S.
NWS methods.

Observed
WBGT

Station
WBGT

Metric Method 24 48 24 48

Bias score S-WBGT 1.53 0.92 1.21 0.51
S-WBGT Z 2.11 1.77 2.24 1.43
NWS WBGT 0.67 0.15 0.31 0.04

Hit rate S-WBGT 84% 62% 52% 16%
S-WBGT Z 94% 77% 75% 40%
NWS WBGT 42% 8% 18% 2%

False alarm ratio S-WBGT 0.45 0.33 0.04 0.01
S-WBGT Z 0.55 0.57 0.09 0.04
NWS WBGT 0.37 0.50 0.01 0.00

Percent correct S-WBGT 76% 91% 93% 96%
S-WBGT Z 66% 84% 90% 94%
NWS WBGT 77% 86% 94% 96%

TABLE 8. Verification scores for WBGT flag forecast by
method (NBM 24-h forecast). S-WBGT (Z) are the forecasts
using the Liljegren method, with PG stability classes (surface
roughness) to downscale wind speeds. NWS WBGT is the
WBGT forecast utilizing the NWS methods.

Method
Heidke

skill score
Gerrity

skill score
Percent
correct

Observed WBGT S-WBGT 0.28 0.40 47
S-WBGT Z 0.22 0.34 42
NWS WBGT 0.16 0.32 38

Station WBGT S-WBGT 0.41 0.55 63
S-WBGT Z 0.34 0.62 55
NWS WBGT 0.36 0.36 62
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magnitudes of positive bias increases at and immediately after
solar noon compared to the S-WBGT and NWSWBGT (Fig. 6).

The correlation between surface roughness length and dif-
ferences in the station WBGT between the S-WBGT and
S-WBGT Z were statistically significant (p , 0.01) with a
Pearson correlation coefficient of 0.63 when WBGT was
greater than or equal to 31.18C. As surface roughness in-
creased, differences between the S-WBGT Z bias compared
to the bias of other methods also increased (Fig. 8). Thus,
S-WBGT Z was a particularly better forecast for sites with
rougher surfaces.

Last, weighted average surface roughness with different
weightings for the roughness at varying spatial scales (30, 100,
250, and 500 m) (Table A1) was not sensitive to the different
configurations of weights for calculating this average (Fig. A1).
Variations in the station WBGT calculated using these different
surface roughness values and corresponding wind speeds
ranged from 20.18 to 0.28C, but the majority of differences (be-
tween the 25th and 75th percentiles) ranged from 20.058 to
10.058C (Fig. A1). The analysis here thus utilized the surface
roughness weighting schema of 30 m (10%), 100 m (25%),
250 m (50%), and 500 m (15%).

The second aspect of the investigation into surface rough-
ness sought to determine if the finer resolution of Sentinel
2A/2B satellite imagery (10 m) offered significant improve-
ment relative to Landsat 8 ETM1 (30 m). Comparisons re-
vealed no differences between the roughness values derived
from these two sources, except for negligible differences in
forested areas where there were slight differences in NDVI.
Given the limited differences between the two and despite
the challenges associated with higher-resolution data (e.g.,
storage space, data processing speed, etc.), the analysis here
proceeded with using the Sentinel imagery as it was already
processed.

5. Discussion and conclusions

Wet bulb globe temperature (WBGT) is a heat stress index
that is increasingly utilized for safeguarding health, such as
in athletics and workplaces, since it is comprehensive in ac-
counting for environmental variables influencing heat stress.
However, forecasts of WBGT have not been standard, with ef-
forts to create these forecasts in the United States having only
been undertaken recently, with the NWS forecast becoming

operational in 2022. Furthermore, validation of the accuracy of
these forecasts has been limited spatially, with respect to the
number of sites with ground truth measurements, and tempo-
rally, by limited number of days sampled for verification. The re-
search presented here assessed the accuracy of WBGT forecasts
relative to 1) observed WBGT with an ISO-compliant WBGT
meter and 2) estimated WBGT ASOS and mesonet stations.
This research also evaluated efforts to improve the SERCC
WBGT forecast by more accurately estimating the wind speed
at 2 m based on wind speed at 10 m above the ground.

a. Overall WBGT forecast bias

Comparisons between WBGT forecasts using the NBM
and NDFD revealed some differences, particularly at higher
WBGTs, with the NDFD having a more negative (cold) bias.
It is hypothesized that these differences are driven primarily
by differences in the forecast wind speed between the two
forecast products, with the NDFD wind speeds being faster
than the NBM (Fig. D1 in appendix D). The NBM is used
heavily to inform the NDFD gridded product (Craven et al.
2018). Thus, it is evident that the tendency for wind speeds to
be increased from the baseline wind speeds forecast in the
NBM has a significant impact on the performance of the
NDFD WBGT forecast, particularly when WBGT is high.
However, the current version of the NBM incorporated ad-
justments to the wind speed forecast, so it may be that this ad-
justment results in faster winds, and more negatively (cool)
biased WBGT relative to what is seen in this study. Addition-
ally, it is important to reiterate that the method used by the
NWS for estimating the natural wet bulb component has
changed from what was used here (Boyer 2022). However,
this study utilized the modified Hunter and Minyard (1999)
method since it was found to be more accurate.

The S-WBGT [which used the Liljegren et al. (2008) method-
ology for calculating WBGT] was found to be more accurate
than the method used by the NWS in most instances, particu-
larly when conditions were dangerous (WBGT . 31.18C).
When WBGT was relatively cooler (i.e., less than 29.48C), the
S-WBGT was more positively (warm) biased than the NWS
WBGT. This warm bias could lead to premature or unnecessary
cancellations of outdoor activities such as sports practices,

TABLE 9. Gerrity skill scores for NBM WBGT flag forecasts.
S-WBGT (Z) are the forecasts using the Liljegren method, with
PG stability classes (surface roughness) to downscale wind
speeds. NWS WBGT is the WBGT forecast utilizing the NWS
methods. Scores for forecast lead times of 24, 48, and 72 h.

Method 24 h 48 h 72 h

Observed WBGT S-WBGT 0.40 0.36 0.31
S-WBGT Z 0.34 0.33 0.34
NWS WBGT 0.32 0.17 0.11

Station WBGT S-WBGT 0.55 0.36 0.31
S-WBGT Z 0.62 0.47 0.41
NWS WBGT 0.36 0.21 0.18 FIG. 8. S-WBGT vs S-WBGT Z average station WBGT forecast

bias relative to surface roughness. S-WBGT (Z) are the forecasts
using the Liljegren method, with PG stability classes (surface
roughness) to downscale wind speeds.
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which might pose logistical and economic challenges. However,
at higher levels of heat stress and WBGTs, the NWS method
underestimated the WBGT while the S-WBGT provided more
accurate results, with a lower relative bias, lower MAE, and
higher hit rate. A cold bias at extreme WBGTS (.31.18C)
could result in insufficient planning and resource allocation for
hazardous periods, which is critical since it is as these WBGTs
when health is more likely to be impacted by heat exposure.

These findings of higher accuracy with the S-WBGT further
support existing research regarding the accuracy of the Liljegren
et al. (2008) methodology (Lemke and Kjellstrom 2012; Patel
et al. 2013). For red and black flags, S-WBGT was within 0.88C
of the observed WBGT. Accuracy at such high values is most
critical given the use of WBGT in making decisions about the
safety of outdoor activity. While this error range (0.88C) could
still lead to WBGT flag misclassification in some instances, it is
sufficiently accurate when compared to the larger error ranges of
commonWBGT meters and established standards, e.g., from the
Japanese National Institute of Occupational Safety and Health
(Racinais et al. 2022). Furthermore, in this case, the S-WBGT
bias erred on the side of caution (being too warm) under these
most thermally stressful conditions, which is preferred here in re-
lation toWBGT being used to safeguard health.

b. Variations in forecast bias

WBGT forecast bias varied across space, weather condi-
tions, and hour of the day. Finding that the coldest biases for
all methods was located in the Appalachian Mountains was
unsurprising due to the intricate influences of terrain in that
area, which are not accounted for in this work. Additionally,
weather forecasts for this region are more complex during the
summer with respect to cloud cover (and thus solar radiation),
as terrain-induced, daytime thunderstorms are challenging to
predict. Consequently, the cool outflows and debris cloud
fields from these storms can potentially cause large forecast
errors. Additional downstream implications of this geography
arise from adiabatic warming driven by westerly winds in the
lee of the mountains.

For the NWS WBGT, the central North Carolina region
had the most accurate forecasts on average. It is hypothesized
that this is related to the effect of wind speed on the differ-
ences in the estimated natural wet bulb temperature and
black globe temperature from the different methodologies,
with there being less difference at higher wind speeds. While
central North Carolina is not a region with low surface rough-
ness overall, the stations where the NWS WBGT performs
better are stations where surface roughness is low, relative to
neighboring stations. This is hypothesized to be the reason be-
hind this pattern for the sparsely forested Midwest and South-
ern Plains, which have climatologically faster wind speeds.

Distinct variations in forecast bias were seen when stratify-
ing by dewpoint temperature, wind speed, and solar radiation.
Rapid variability in these variables (together and separately)
leads to high variability in WBGT, thus increasing the likeli-
hood of errors for the one top-of-the-hour forecast value. The
sensitivity of WBGT to wind speed was revealed by the over-
all range of S-WBGT bias being greater when wind speeds

were low (,0.6–1.0 m s21). The high variability in the
S-WBGT forecast bias under low and variable solar radiation
arises partly from the difficulty in forecasting cloud cover.
This cloud cover, in turn, impacts the estimated solar radia-
tion. This is also evident in the diurnal curve of forecast bias,
with the bias of all forecast methods becoming increasingly
positive toward midday (e.g., the period of highest solar radia-
tion) and then decreasing through the afternoon.

c. Forecasting WBGT flags

As was the case when assessing WBGT forecast bias at
each temperature value, there were noteworthy differences in
accuracy between the methods for forecasting WBGT flag
levels. The analysis revealed that the S-WBGT and S-WBGT
Z were superior in forecasting black flag, with higher hit rates.
However, this paralleled a tendency to over forecast red and,
particularly, black flag, with bias scores greater than one and
higher false alarm ratios for black flag than the NWS WBGT:
0.45 (S-WBGT) and 0.55 (S-WBGT Z) compared to 0.37 for
the NWS WBGT (Table 5). This pattern was true when as-
sessing Observed and Station WBGT forecast flags. However,
with station WBGT, the magnitude of the NWSWBGT under
forecasting red and black flag, and S-WBGT and S-WBGT Z
over forecasting these flags was slightly higher.

Ultimately this reveals a delicate balance that results in a
decision between 1) being more certain that when a black flag
is forecast, a black flag will be observed; but if a black flag is
not forecast, it still very well could be observed (NWS
WBGT) and 2) if a black flag is forecast, it may occur and, if it
is not forecast, one has higher confidence in that being true
(S-WBGT methods). This latter option is particularly true for
locations more sheltered from wind, for which the S-WBGT Z
produces a more accurate forecast. Given the use of WBGT in
protecting health, erring on the side of overforecasting black
flag conditions might be preferable to underforecasting. Even if
these conditions do not materialize, activities can be adjusted.
However, both under- and overforecasting have logistical impli-
cations: for instance, a sudden cancellation of high school practi-
ces due to forecasting changes can disrupt parents’ work
schedules, who then have to pick up their child. Furthermore,
the HSS and GSS support the use of the S-WBGT methods,
since they both have higher scores and higher percent corrects
relative to the NWS WBGT (Table 8). While the GSS for
S-WBGT Z and NWS WBGT are very close (0.34 versus 0.32,
respectively), it is important to note that the GSS is accounting
for the “closeness” of the categorical forecast misses. However,
even though the NWS methods resulted in “close” misses when
a black flag was observed, the difference in activity modifica-
tions and health implications between a red and black flag are
important to consider.

d. Surface roughness

Last, given the paramount influence of wind speed on
WBGT, this research addressed how the influence of land
cover and associated surface roughness impact current efforts
to forecast wind speed and WBGT. Since wind speeds are
measured and forecasted for 10 m above the ground, they
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must be downscaled to 2 m to assess human heat stress. This
study compared two methods of downscaling (translating)
winds: 1) Pasquil–Gifford stability classes and 2) surface
roughness values (derived from high-resolution satellite imag-
ery). Incorporating more granular land cover information and
surface roughness improved the WBGT forecasts. Impor-
tantly, however, this improvement was not uniform. The use
of surface roughness for downscaling wind speeds results in
more positively (warm) biased WBGT at sites with low sur-
face roughness relative to sites with higher roughness. This
implies that the S-WBGT Z is more reliable in complex ter-
rain (e.g., increased tree cover or urban environments with
large structures). Future work could ascertain the roughness
level below which the use of surface roughness does not im-
prove the WBGT forecast. Exploring other methods for esti-
mating surface roughness at a reasonable scale may also
prove beneficial, including incorporating the influence of dif-
ferences in surface roughness from different directions (e.g.,
for a given point, wind from the north travels over dense for-
est and thus is slowed more by roughness than winds from the
south that travel over open fields).

Additionally, there were negligible differences between the
surface roughness values derived from the Sentinel and Land-
sat imagery. It is hypothesized that this is largely due to the
use of the NCLD 2019 as the landcover data with which the
vegetation indices from the images were paired. If land cover
were classified directly from the Sentinel and Landsat imagery
themselves, there might have been more of a difference. How-
ever, given the challenge of accurately classifying land cover
over broad spatial areas and the need to consider surface
roughness values at varying scales (e.g., 30, 100 m, etc.), any
substantial differences and possible benefits of using the
higher resolution imagery are unlikely and significantly less
feasible to operationalize.

This research continues to emphasize the importance of se-
lecting the best methodologies for estimating WBGT and
demonstrates the ability to forecast WBGT accurately, partic-
ularly when the conditions are dangerous. Further research
should be conducted to confirm the accuracy of WBGT fore-
casts in comparison to in situ WBGT across the broader
CONUS. As more organizations and entities begin using
WBGT, accurate WBGT forecasts will continue to increase in
value as they enable robust planning for outdoor activity and
early warning of particularly hazardous periods.

Last, it is important to acknowledge that WBGT estimation
involves multiple input variables, each with its own uncertainty.
These uncertainties, such as those in downscaling wind speed
and estimating solar radiation, can compound and affect the
final WBGT values. While our methodology aims to minimize
the effects of these uncertainties on the resulting estimations of the
natural wet bulb temperature and black globe temperature, they
should be consideredwhen interpreting the results.

Overall, WBGT forecasts are more challenging for areas
with complex microclimates, particularly microclimates with
higher surface roughness (i.e., areas with many trees or struc-
tures). The forecasts should be used with caution in such
areas. Additional information to complement these forecasts
include 1) developing a general understanding of how your

specific microclimate influences WBGT and 2) comparing
WBGT readings with the forecast, from which user-based
bias corrections could be estimated. WBGT forecasts enable
robust planning of outdoor activity; however, measurements
of WBGT onsite at the time of activity remain critical.
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APPENDIX A

Surface Roughness Weighted Average Schema

Table A1 displays seven configurations of calculating the
weighted average surface roughness across different spatial
scales for a given pixel. Figure A1 displays the difference
between station WBGT calculated when using weighted
average surface roughness with configuration 1 (Table A1)
compared to the six other configurations.

TABLE A1. Surface roughness weighted average schema.

Weights (%) for each scale

Scale (m) 1 2 3 4 5 6 7

30 10 10 15 15 25 25 10
100 25 50 35 50 40 25 20
250 50 25 35 20 25 25 40
500 15 15 15 15 10 25 30

FIG. A1. Station WBGT sensitivity to differences in weighted aver-
ages across spatial scales.
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APPENDIX B

Station WBGT Bias: Regional Variations

Bias is calculated as forecast WBGT minus station
WBGT. Forecast bias is for a 24-h lead time. S-WBGT
(Z) are the forecasts using the Liljegren method, with PG
stability classes (surface roughness) to downscale wind
speeds (see Fig. B1). NWS WBGT refers to the WBGT
forecast utilizing the NWS methods.

APPENDIX C

Confusion Matrices for Observed and Station WBGT
Flag Forecast Accuracy Assessment

WBGT flags are as follows: 1) green flag (26.78–29.48C),
2) yellow flag (29.58–31.08C), 3) red flag (31.18–32.18C), and

4) black flag (32.28C1). The assessment is for a forecast lead
time of 24 h. S-WBGT (Z) are the forecasts using the Liljegren
method, with PG stability classes (surface roughness) to down-
scale wind speeds (see Tables C1 and C2). NWS WBGT refers
to the WBGT forecast utilizing the NWS methods.

FIG. B1. Station WBGT bias: Regional variations.

TABLE C1. Confusion matrices for observed WBGT flag forecast
accuracy assessment.

Observed flag

Forecast
S-WBGT S-WBGT Z NWS WBGT

Flag 1 2 3 4 1 2 3 4 1 2 3 4

1 76 8 2 0 64 5 1 0 92 26 5 0
2 51 56 12 3 49 40 7 0 53 72 49 17
3 34 59 59 23 39 55 28 8 24 62 43 53
4 16 49 45 88 29 72 82 106 2 12 21 44

TABLE C2. Confusion matrices for station WBGT flag forecast accuracy assessment.

Station flag

Forecast
S-WBGT S-WBGT Z NWS WBGT

Flag 1 2 3 4 1 2 3 4 1 2 3 4

1 38 264 5904 273 30 33 069 2803 82 5 38 264 5904 273 30
2 12 764 15 666 3656 680 17 982 13 858 1858 185 12 764 15 666 3656 680
3 1985 5350 4524 2010 3770 8434 4413 1219 1985 5350 4524 2010
4 406 1404 2080 2889 941 3249 4180 4200 406 1404 2080 2889
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APPENDIX D

NBM and NDFD 2-m Wind Comparison

Figure D1 displays a comparison of forecast wind speeds
(24-h lead time) between the National Blend of Models
(NBM) and National Digital Forecast Database (NDFD).
Boxplot whiskers extend up to 1.5 times the interquartile
range (e.g., top whisker is 1.5 3 IQR 1 third quartile
value). S-WBGT Z is SERCC/CISA forecast with wind
speed downscaled to 2 m using PG stability classes (surface
roughness).
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