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Abstract. Combinatorics is the field of mathematics studying the combination and permu-
tation of sets of elements and the relationships that constitute their properties. A problem
proposed in The College Mathematics Journal asks for a closed form expression for the
number of ways to tile an n × n square with 1 × 1 squares and (n− 1)× 1 rectangles (each
of which may be placed horizontally or vertically) for an integer n ≥ 3. Using a 3 x 3 square
as a starting point, we determined all of the possible cases by hand. Upon doing so, we were
able to determine generalizable patterns for n cases and formulate combinations for each.
Finally, using a series of identities we rewrote the formula into a compact form.

1. Introduction

Problem 1216 as proposed in The College Mathematics Journal [1]: For an integer n ≥ 3,
find a closed form expression for the number of ways to tile an n×n square with 1×1 squares
and (n− 1)× 1 rectangles (each of which may be placed horizontally or vertically).

We begin by making two observations. First, the number of ways to tile an n× n square
with k (n−1)×1 rectangles placed vertically and j (n−1)×1 rectangles placed horizontally
is the same as the number of ways to tile an n×n square with k (n−1)×1 rectangles placed
horizontally and j (n− 1)× 1 rectangles placed vertically assuming k ̸= j. This can be seen
by rotating each tiling by 90 degrees. The second observation is found in Lemma 1.

2. Solution

Lemma 1. There does not exist an arrangement of k (n−1)×1 rectangles placed horizontally
(vertically), k ≥ 3, and j (n−1)×1 rectangles placed vertically (horizontally), j ≥ 2, within
an n× n square.

Proof. Without loss of generality, place k (n−1)×1 rectangles horizontally and j (n−1)×1
rectangles vertically within an n × n square. Begin by placing the k horizontal tiles within
the square. Note that each row of the square contains at most one such tile. When a row
contains a horizontal tile, there is exactly one 1× 1 square not covered by the tile.

At most one column will have (n− 1) or more 1× 1 squares not covered by a horizontal
tile. Suppose not. Then one such column will be created by lining up at least k − 1 of the
horizontal tiles to the left (or the right) side of the n × n square while the kth horizontal
tile is either on the same side or at the top or the bottom of the square. Then any other
column will have at most (n− k+1) 1× 1 squares not covered by the horizontal tiles. Since
k ≥ 3, n − k + 1 ≤ n − 2 which means a second vertical tile cannot be placed within the
n× n square. □
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Theorem 2. We have determined that there are

2(3n) + 2n+3 + 2n+2 − 19

ways to tile an n× n square as described in Problem 1216.

Proof. We consider several cases based on the number of (n− 1)× 1 tiles placed within the
n× n square.

Case 1. Suppose no (n − 1) × 1 tiles are used. Then there is one way to tile the n × n
square with only 1× 1 square tiles.

Case 2. Suppose k, 1 ≤ k ≤ n, (n − 1) × 1 tiles are placed within the n × n square and
all are placed horizontally or all are placed vertically. Then there are

(
n
k

)
ways to choose the

rows (columns) in which to place the horizontal (vertical) tiles. Each tile can be placed to
the left or the right (top or bottom) of the n× n square. Therefore, there are

∑n
k=1 2

k+1
(
n
k

)
ways to tile the n×n square with all (n−1)×1 tiles being placed horizontally or all vertically.
Case 3. Suppose one (n − 1) × 1 tile is placed horizontally and one (n − 1) × 1 tile is

placed vertically within the n × n square. If the horizontal tile is placed in the top row or
the bottom row, there are n + 1 options of where to place the vertical tile. Then there are
4(n+ 1) ways to place these two tiles in this case. If the horizontal tile is placed in neither
the top nor the bottom row, then there are two options of where to place the vertical tile.
This gives 4(n − 2) ways to place these two tiles in this case. Therefore, there are 8n − 4
ways to tile the n × n square with one (n − 1) × 1 tile placed horizontally and one placed
vertically.

Case 4. Suppose k, 2 ≤ k ≤ n, (n − 1) × 1 tiles are placed horizontally (vertically) and
one (n− 1)× 1 tile is placed vertically (horizontally). Without loss of generality, we assume
the k tiles are placed horizontally and one tile is placed vertically.
Suppose all k horizontal tiles are placed along the same side of the n × n square. Then

there are 2
(
n
k

)
ways to place the horizontal tiles and 2 ways to place the vertical tile. Thus,

4
(
n
k

)
ways to tile in this fashion.

Suppose a horizontal tile is placed in either the top row or the bottom row. If this is not
the case, then all tiles are placed to the same side of the n× n square and has been counted
previously. The remaining k−1 horizontal tiles are placed in the middle and on the opposite
side of the n×n square. Then there is one option to place the vertical tile. Therefore, there
are 4

(
n−2
k−1

)
ways to place the tiles in this fashion.

Suppose horizontal tiles are placed in both the top and bottom rows. They must be placed
on opposite sides of the n× n square. The remaining k− 2 horizontal tiles are placed in the
middle rows and all are placed to the same side. There is then one option for placing the
vertical tile. Therefore, there are 4

(
n−2
k−2

)
ways to place the tiles in this fashion.

We now add these totals and double the sum to find the total number of ways to tile the
n× n square with k, 2 ≤ k ≤ n, (n− 1)× 1 tiles in one direction and one (n− 1)× 1 tile in
the other direction is 8

∑n
k=2

((
n
k

)
+
(
n−2
k−1

)
+
(
n−2
k−2

))
ways.

Case 5. Suppose two (n − 1) × 1 tiles are placed horizontally and 2 (n − 1) × 1 tiles are
placed vertically. There are exactly two ways to placed the tiles in this fashion by placing
them in the corners of the n× n square.

Therefore, the total is then

1 +
n∑

k=1

2k+1

(
n

k

)
+ 8n− 4 + 8

n∑
k=2

((
n

k

)
+

(
n− 2

k − 1

)
+

(
n− 2

k − 2

))
+ 2.
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We now simplify this expression. Consider
∑n

k=1 2
k+1

(
n
k

)
.

We can rewrite this as 2
∑n

k=1 2
k
(
n
k

)
= 2(3n−1) using the well-known identity

∑n
k=0 2

k
(
n
k

)
=

3n, (see [2]).
We know

∑n
k=2

(
n
k

)
= 2n − n− 1 using the identity

∑n
k=0

(
n
k

)
= 2n.

Using the identity
(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
, (see [2]), we find that

(
n−2
k−1

)
+
(
n−2
k−2

)
=

(
n−1
k−1

)
. Then

we see that
∑n

k=2

(
n−1
k−1

)
= 2n−1 − 1 after shifting the index.

Now we have

1 +
n∑

k=1

2k+1

(
n

k

)
+ 8n− 4 + 8

n∑
k=2

((
n

k

)
+

(
n− 2

k − 1

)
+

(
n− 2

k − 2

))
+ 2

=1 + 2(3n) + 8n− 4 + 8(2n − n− 1) + 8(2n−1 − 1) + 2

=2(3n) + 2n+3 + 2n+2 − 19.

□

3. Conclusion

Conclusively, by experimenting with a 3 × 3 square, we were able to come up with cases
that could be generalized to an n × n square. Upon doing so, we wrote these results in
terms of combinations which could then be simplified into a closed form expression using
various identities. Upon completion of the problem we submitted our results to The College
Mathematics Journal to be considered for publication.
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