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ascal’s triangle (perhaps more 
aptly named Halayudha’s triangle 
or simply the arithmetic triangle) 
generally holds the title as the 
most famous number triangle. 

You can even find the Fibonacci numbers—defined 
by F0 = 0, F1 = 1, and Fn = Fn–1 +Fn–2 for all ≥ 2n — 
in the triangle, and this sequence provides a 
treasure trove of patterns and identities. But there 
is another, less well-known number triangle that 
contains the Fibonacci numbers as well. We have 
found that experimenting with geometric patterns 
in this Fibonacci triangle provides the opportunity 
to discover old and new Fibonacci identities.

In 1976, Haruo Hosoya, a chemist with interest 
in discrete mathematics, introduced what is now 
called the Hosoya triangle (formerly the Fibonacci 
triangle) pictured in figure 1 (Hosoya, “Fibonacci 
Triangle,” Fib. Quart. 14(3) [1976]). The kth entry in 
row r of this triangle, denoted by H(r,k), is defined 
to be ⋅ − +1F Fk r k  so that each entry of the Hosoya 
triangle is the product of two Fibonacci numbers. 
For example, the entry highlighted in green in 
figure 1 is H(9,4) = = ⋅ =(9,4) 24.4 6H F F  

Alternatively, each entry can be written as the 
sum of the two previous entries in the slash or 
the backslash diagonal: the slash diagonal is the 
diagonal in the southwest direction while the 
backslash diagonal is the diagonal in the southeast 
direction, as illustrated in figure 1. More precisely, 
we have = − − + − −( , ) ( 1, 1) ( 2, 2)H r k H r k H r k  
and = − + −( , ) ( 1, ) ( 2, ).H r k H r k H r k  For instance, 
the entry 24 highlighted in green in figure 1 is  
24 = 15 + 9 (along the slash diagonal) or 24 = 16 + 8 
(along the backslash diagonal). 

We initiate the exploration of certain geometric 
patterns embedded in the Hosoya triangle. These 
techniques can engage students in undergraduate 
research to help discover, or rediscover, identities. In fact, 
these experiments were conducted by the first author 
while he was working on his senior research project.

Honeycomb Movements
Number triangles admit a tiling by hexagonal 
tiles as seen in figure 2. We call this tiling the 
honeycomb pattern. Figure 3 shows certain 
paths, inspired by the work of Leonard Carlitz, 
that bees might take through the honeycomb 
pattern. Originally, Carlitz worked on an infinite 
honeycomb with only two adjacent rows of cells 
to find the number of paths that a bee could take 

Figure 1. The Hosoya triangle. One slash 
diagonal is pictured in dashed red and a 
backslash diagonal is pictured in dashed blue.
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to travel from one cell to another, given that it 
can only move left to right. Carlitz found that the 
number of paths used to travel from cell 1 to cell 
n is +1Fn  (Koshy, Fibonacci and Lucas Numbers 
with Applications, John Wiley, [2001]).

We consider a different perspective by 
embedding the Carlitz paths from figure 3 into 
the Hosoya triangle. 

The pattern in figure 3a embeds into odd-
numbered rows of the Hosoya triangle (as  
in figure 4). The third pictured row shows  
F2F6 + F4F4 + F6F2 = 8 + 9 + 8 = 25. In 
general, this pattern produces the sum

∑
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when n is odd. Computing the first few values 
of this sequence yields 1, 6, 25, 90, 300, …. We 
discovered (and can prove by induction) that 
this sequence has the following closed formula:
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This sequence appears in the Online Encyclopedia 
of Integer Sequences (OEIS); the entry contains 
other closed formulas (oeis.org/A001871).

Next, by embedding the pattern from figure 3b 
into the triangle (figure 5), we obtain sums like

+ + + +
+ + + + = 390.

2 10 2 8 4 8 4 6 6 6

6 4 8 4 8 2 10 2

F F F F F F F F F F
F F F F F F F F

In general, this pattern leads to the formula 
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Figure 3. Carlitz patterns on honeycombs.

Figure 4. The pattern from figure 3a results in 
summing every other entry in the odd rows.

Figure 5. Two sums (not successive) of the 
pattern in figure 3b.

Figure 2. Tiling the Hosoya triangle with 
hexagons creates the honeycomb pattern.



26 February 2022 | Math Horizons     www.maa.org/mathhorizons

for any odd positive integer n > 1 (which appears 
in oeis.org/A197649). 

We can embed the pattern in figure 3c with 
one plateau in row r = 7 as in figure 6. When 
we sum the entries in this pattern, we obtain 

+ + + = +2 ( ).2 6 2 4 4 2 6 2 2 4 6F F F F F F F F F F F  The next 
row in which we can embed the pattern is row  
r = 13, allowing two plateaus (as in figure 6). The 
resulting sum is given by

+ + +

= + + +

2( )

2( ( ) ( )).
2 12 2 10 4 8 8 6

2 12 10 8 4 6

F F F F F F F F

F F F F F F

We can include three plateaus in row r = 19, 
yielding the sum

+ + + + + +

= + + + + +

2( )

2( ( ) ( ) ( )).
2 18 2 16 4 14 6 14 8 12 8 10

2 16 18 14 4 6 8 10 12

F F F F F F F F F F F F

F F F F F F F F F

We note that + =− + ,1 1F F Lk k k  where ( )Ln  denotes 
the sequence of Lucas numbers, defined by = 20L ,  
= 11L , and = +− −1 2L L Ln n n  for all ≥ 2.n  Using the 

Lucas numbers, the sums given above for rows  
r = 7, r = 13, and r = 19 equal 2 ,2 5F L  +2( ),2 11 8 5F L F L  
and 2(F2L17 + F8L11 + F14L5) respectively.

In general for ≥1,n  we can embed the pattern 
from figure 3c in row r = 6n + 1 using n plateaus. 
The sum of the entries in the pattern will be 
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where m = 6n – 1.
Finally, the triangular pattern in figure 3e 

traverses every hexagon in the honeycomb tiling as 
shown in figure 7. The entries from these hexagons 
produce the integer sequence 1, 3, 3, 8, 9, 8, 21, 24, ….  
According to the OEIS (A141678), this represents a 
triangular array in which each entry is described 
in terms of the bisection of the Fibonacci sequence. 
If we let entry k in row n of this new triangle be 
denoted by T(n,k), then our interpretation shows that

= ⋅− + +( , ) .2 2 2 2 2T n k F Fn k k

Keeping track of the partial sums along the 
path in figure 7 gives 1, 4, 7, 15, 24, 32, …, which 
is a sequence not in the OEIS! Can you find a 
closed formula?

Further Explorations
The use of honeycombs to search for patterns in 
the Hosoya triangle arose from the second and 
third authors’ interest in the generalization of 
the star of David property, a well-known result 
for Pascal’s triangle, to the Hosoya triangle. 

In the case of Pascal’s triangle, if a star of David is 
embedded in a hexagon of numbers, as illustrated 
on the left in figure 8, then the greatest common 
divisor (denoted by gcd) of the alternating points 
of the hexagon of the honeycomb are equal, that 
is, gcd(a,c,e) = gcd(b,d,f). Moreover, the product of 
alternating points of a hexagon of the honeycomb 
are equal, so ⋅ ⋅ = ⋅ ⋅ .a c e b d f

These properties have analogous facts in the 
Hosoya triangle. The product of alternating points 
of the hexagon in the honeycomb are also equal 
in this case, that is, ⋅ ⋅ = ⋅ ⋅a c e b d f  in figure 8. 
The greatest common divisor of alternating points 
of the hexagon in the honeycomb are equal and 
always 1: gcd(a,c,e) = gcd(b,d,f) = 1. And finally, 
the product of the two greatest common divisors 
of both opposite diagonal vertex numbers in the 

Figure 7. Extending the triangle path from 
figure 3e in the Hosoya triangle.

Figure 8. The general star of David property 
and one star of David from the Hosoya triangle.

Figure 6. Embedding pattern from figure 3c in 
rows 7 and 13 from the Hosoya triangle.
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hexagon is equal to the value within the hexagon: 
⋅ =gcd( , ) gcd( , ) .a d b e g

In the first hexagon from row r = 2 of the 
honeycomb pattern in figure 2, we can check that 
⋅ ⋅ = = ⋅ ⋅3 5 4 60 2 6 5; = =gcd(3,5,4) 1 gcd(2,6,5);  

and ⋅ =gcd(3,6) gcd(2,5) 3. These properties 
actually hold in any hexagon in the Hosoya 
triangle. For example, you can check these 
relations hold for hexagon on the right of figure 8,  
centered at entry H(8,5) in the triangle.

We invite the reader to investigate properties 
using a larger star of David (like the one in 
figure 9) in the Hosoya triangle. 

There are numerous other number triangles 
to investigate, such as Lucas’s, Josef’s, and 
Liebniz’s harmonic triangle. You can explore 
these triangles (or even Pascal’s triangle) using 
or expanding on the techniques discussed here. 
This approach of experimentation with triangular 
arrays can be quite effective when it comes to 
engaging in research as an undergraduate or 
beyond (Flórez and Mukherjee, “Solving open 
problems with students as a first research 
experience,” Teach. Math. Its Appl [2017]).  l
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Figure 9. A larger star of David pattern.
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